
(To appear in ALGORITHMICA)On{line construction of su�x trees 1Esko UkkonenDepartment of Computer Science, University of Helsinki,P. O. Box 26 (Teollisuuskatu 23), FIN{00014 University of Helsinki, FinlandTel.: +358-0-7084172, fax: +358-0-7084441Email: ukkonen@cs.Helsinki.FIAbstract.An on{line algorithm is presented for constructing the su�x tree for agiven string in time linear in the length of the string. The new algorithm hasthe desirable property of processing the string symbol by symbol from left toright. It has always the su�x tree for the scanned part of the string ready.The method is developed as a linear{time version of a very simple algorithmfor (quadratic size) su�x tries. Regardless of its quadratic worst-case thislatter algorithm can be a good practical method when the string is not toolong. Another variation of this method is shown to give in a natural way thewell{known algorithms for constructing su�x automata (DAWGs).Key Words. Linear time algorithm, su�x tree, su�x trie, su�x automa-ton, DAWG.1Research supported by the Academy of Finland and by the Alexander von HumboldtFoundation (Germany). 1

1. INTRODUCTIONA su�x tree is a trie{like data structure representing all su�xes of astring. Such trees have a central role in many algorithms on strings, seee.g. [3, 7, 2]. It is quite commonly felt, however, that the linear{time su�xtree algorithms presented in the literature are rather di�cult to grasp.The main purpose of this paper is to be an attempt in developing anunderstandable su�x tree construction based on a natural idea that seemsto complete our picture of su�x trees in an essential way. The new algorithmhas the important property of being on{line. It processes the string symbolby symbol from left to right, and has always the su�x tree for the scannedpart of the string ready. The algorithm is based on the simple observationthat the su�xes of a string T i = t1 � � � ti can be obtained from the su�xesof string T i�1 = t1 � � � ti�1 by catenating symbol ti at the end of each su�xof T i�1 and by adding the empty su�x. The su�xes of the whole stringT = T n = t1t2 � � � tn can be obtained by �rst expanding the su�xes of T 0into the su�xes of T 1 and so on, until the su�xes of T are obtained fromthe su�xes of T n�1.This is in contrast with the method by Weiner [13] that proceeds right{to{left and adds the su�xes to the tree in increasing order of their length,starting from the shortest su�x, and with the method by McCreight [9] thatadds the su�xes to the tree in the decreasing order of their length. It shouldbe noted, however, that despite of the clear di�erence in the intuitive viewon the problem, our algorithm and McCreight's algorithm are in their �nalform functionally rather closely related.Our algorithm is best understood as a linear{time version of anotheralgorithm from [12] for (quadratic{size) su�x tries. The latter very elemen-tary algorithm, which resembles the position tree algorithm in [8], is given inSection 2. Unfortunately, it does not run in linear time { it takes time propor-tional to the size of the su�x trie which can be quadratic. However, a rathertransparent modi�cation, which we describe in Section 4, gives our on{line,linear{time method for su�x trees. This also o�ers a natural perspective2

which makes the linear{time su�x tree construction understandable.We also point out in Section 5 that the su�x trie augmented with thesu�x links gives an elementary characterization of the su�x automata (alsoknown as directed acyclic word graphs or DAWGs). This immediately leadsto an algorithm for constructing such automata. Fortunately, the resultingmethod is essentially the same as already given in [4{6]. Again it is feltthat our new perspective is very natural and helps understanding the su�xautomata constructions.2. CONSTRUCTING SUFFIX TRIESLet T = t1t2 � � � tn be a string over an alphabet �. Each string x such thatT = uxv for some (possibly empty) strings u and v is a substring of T , andeach string Ti = ti � � � tn where 1 � i � n + 1 is a su�x of T ; in particular,Tn+1 = � is the empty su�x. The set of all su�xes of T is denoted �(T).The su�x trie of T is a trie representing �(T).More formally, we denote the su�x trie of T as STrie(T) =(Q[f?g; root; F; g; f) and de�ne such a trie as an augmented deterministic�nite{state automaton which has a tree{shaped transition graph representingthe trie for �(T) and which is augmented with the so{called su�x functionf and auxiliary state ?. The set Q of the states of STrie(T) can be put ina one{to{one correspondence with the substrings of T . We denote by �x thestate that corresponds to a substring x.The initial state root corresponds to the empty string �, and the set F ofthe �nal states corresponds to �(T). The transition function g is de�ned asg(�x; a) = �y for all �x, �y in Q such that y = xa, where a 2 �.The su�x function f is de�ned for each state �x 2 Q as follows. Let�x 6= root. Then x = ay for some a 2 �, and we set f(�x) = �y. Moreover,f(root) =?.Auxiliary state ? allows us to write the algorithms in the sequel suchthat an explicit distinction between the empty and the nonempty su�xes(or, between root and the other states) can be avoided. State ? is connected3

to the trie by g(?; a) = root for every a 2 �. We leave f(?) unde�ned. (Notethat the transitions from ? to root are de�ned consistently with the othertransitions: State ? corresponds to the inverse a�1 of all symbols a 2 �.Because a�1a = �, we can set g(?; a) = root as root corresponds to �.)Following [9] we call f(r) the su�x link of state r. The su�x links willbe utilized during the construction of a su�x tree; they have many uses alsoin the applications (e.g. [11, 12]).Automaton STrie(T) is identical to the Aho{Corasick string matchingautomaton [1] for the key{word set fTij1 � i � n + 1g (the su�x links arecalled in [1] the failure transitions.)

Fig. 1. Construction of STrie(cacao): state transitions shown in boldarrows, failure transitions in thin arrows. Note: Only the last two layers ofsu�x links shown explicitly.It is easy to construct STrie(T) on{line, in a left{to{right scan over T asfollows. Let T i denote the pre�x t1 � � � ti of T for 0 � i � n. As intermediateresults the construction gives STrie(T i) for i = 0; 1; : : : ; n. Fig. 1 shows the4

di�erent phases of constructing STrie(T) for T = cacao.The key{observation explaining how STrie(T i) is obtained from STrie(T i�1)is that the su�xes of T i can be obtained by catenating ti to the end of eachsu�x of T i�1 and by adding an empty su�x. That is,�(T i) = �(T i�1)ti [f�g:By de�nition, STrie(T i�1) accepts �(T i�1). To make it accept �(T i), we mustexamine the �nal state set Fi�1 of STrie(T i�1). If r 2 Fi�1 has not alreadya ti{transition, such a transition from r to a new state (which becomes anew leaf of the trie) is added. The states to which there is an old or newti{transition from some state in Fi�1 constitute together with root the �nalstates Fi of STrie(T i).The states r 2 Fi�1 that get new transitions can be found using the su�xlinks as follows. The de�nition of the su�x function implies that r 2 Fi�1 ifand only if r = f j(t1 : : : ti�1) for some 0 � j � i� 1. Therefore all states inFi�1 are on the path of su�x links that starts from the deepest state t1 : : : ti�1of STrie(T i�1) and ends at ?. We call this important path the boundary pathof STrie(T i�1).The boundary path is traversed. If a state �z on the boundary path doesnot have a transition on ti yet, a new state zti and a new transition g(�z; ti) =zti are added. This gives updated g. To get updated f , the new states ztiare linked together with new su�x links that form a path starting from statet1 : : : ti. Obviously, this is the boundary path of STrie(T i).The traversal over Fi�1 along the boundary path can be stopped imme-diately when the �rst state �z is found such that state zti (and hence alsotransition g(�z; ti) = zti) already exists. Let namely zti already be a state.Then STrie(T i�1) has to contain state z0ti and transition g(z0; ti) = z0ti forall z0 = f j(�z), j � 1. In other words, if zti is a substring of T i�1 then everysu�x of zti is a substring of T i�1. Note that �z always exists because ? is thelast state on the boundary path and ? has a transition for every possible ti.When the traversal is stopped in this way, the procedure will create a newstate for every su�x link examined during the traversal. This implies that5

the whole procedure will take time proportional to the size of the resultingautomaton.Summarized, the procedure for building STrie(T i) from STrie(T i�1) is asfollows [12]. Here top denotes the state t1 : : : ti�1.Algorithm 1.r top;while g(r; ti) is unde�ned docreate new state r0 and new transition g(r; ti) = r0;if r 6= top then create new su�x link f(oldr0) = r0;oldr0 r0;r f(r);create new su�x link f(oldr0) = g(r; ti);top g(top; ti).Starting from STrie(�), which consists only of root and ? and the linksbetween them, and repeating Algorithm 1 for ti = t1; t2; : : : ; tn, we obviouslyget STrie(T). The algorithm is optimal in the sense that it takes time pro-portional to the size of its end result STrie(T). This in turn is proportionalto jQj, that is, to the number of di�erent substrings of T . Unfortunately,this can be quadratic in jT j, as is the case for example if T = anbn.Theorem 1 Su�x trie STrie(T) can be constructed in time proportional tothe size of STrie(T) which, in the worst case, is O(jT j2).3. SUFFIX TREESSu�x tree STree(T) of T is a data structure that represents STrie(T) inspace linear in the length jT j of T . This is achieved by representing only asubset Q0 [f?g of the states of STrie(T). We call the states in Q0 [f?gthe explicit states. Set Q0 consists of all branching states (states from whichthere are at least two transitions) and all leaves (states from which there areno transitions) of STrie(T). By de�nition, root is included into the branchingstates. The other states of STrie(T) (the states other than root and ? from6

which there is exactly one transition) are called implicit states as states ofSTree(T); they are not explicitly present in STree(T).The string w spelled out by the transition path in STrie(T) between twoexplicit states s and r is represented in STree(T) as generalized transitiong0(s;w) = r. To save space the string w is actually represented as a pair(k; p) of pointers (the left pointer k and the right pointer p) to T such thattk : : : tp = w. In this way the generalized transition gets form g0(s; (k; p)) = r.Such pointers exist because there must be a su�x Ti such that the tran-sition path for Ti in STrie(T) goes through s and r. We could select thesmallest such i, and let k and p point to the substring of this Ti that isspelled out by the transition path from s to r. A transition g0(s; (k; p)) = ris called an a{transition if tk = a. Each s can have at most one a{transitionfor each a 2 �.Transitions g(?; a) = root are represented in a similar fashion: Let � =fa1; a2; : : : ; amg. Then g(?; aj) = root is represented as g(?; (�j;�j)) =root for j = 1; : : : ;m.Hence su�x tree STree(T) has two components: The tree itself and thestring T . It is of linear size in jT j because Q0 has at most jT j leaves (there isat most one leaf for each nonempty su�x) and therefore Q0 has to contain atmost jT j � 1 branching states (when jT j > 1). There can be at most 2jT j � 2transitions between the states in Q0, each taking a constant space becauseof using pointers instead of an explicit string. (Here we have assumed thestandard RAM model in which a pointer takes constant space.)We again augment the structure with the su�x function f 0, now de�nedonly for all branching states �x 6= root as f 0(�x) = �y where y is a branchingstate such that x = ay for some a 2 �, and f 0(root) =?. Such an f 0 iswell{de�ned: If �x is a branching state, then also f 0(�x) is a branching state.These su�x links are explicitly represented. It will sometimes be helpfulto speak about implicit su�x links, i.e. imaginary su�x links between theimplicit states.The su�x tree of T is denoted as STree(T) = (Q0 [f?g; root; g0; f 0).We refer to an explicit or implicit state r of a su�x tree by a reference7

pair (s;w) where s is some explicit state that is an ancestor of r and w isthe string spelled out by the transitions from s to r in the correspondingsu�x trie. A reference pair is canonical if s is the closest ancestor of r (andhence, w is shortest possible). For an explicit r the canonical reference pairobviously is (r; �). Again, we represent string w as a pair (k; p) of pointerssuch that tk : : : tp = w. In this way a reference pair (s;w) gets form (s; (k; p)).Pair (s; �) is represented as (s; (p+ 1; p)).It is technically convenient to omit the �nal states in the de�nition of asu�x tree. When explicit �nal states are needed in some application, onegets them gratuitously by adding to T an end marking symbol that doesnot occur elsewhere in T . The leaves of the su�x tree for such a T are inone{to{one correspondence with the su�xes of T and constitute the set ofthe �nal states. Another possibility is to traverse the su�x link path fromleaf �T to root and make all states on the path explicit; these states are the�nal states of STree(T). In many applications of STree(T), the start locationof each su�x is stored with the corresponding state. Such an augmented treecan be used as an index for �nding any substring of T .4. ON{LINE CONSTRUCTION OF SUFFIX TREESThe algorithm for constructing STree(T) will be patterned after Algo-rithm 1. What has to be done is for the most part immediately clear. Fig. 2shows the phases of constructing STree(cacao); for simplicity, the strings as-sociated with each transition are shown explicitly in the �gure. However, toget a linear time algorithm some details need a more careful examination.We �rst make more precise what Algorithm 1 does. Let s1 = t1 : : : ti�1,s2, s3; : : : ; si = root, si+1 =? be the states of STrie(T i�1) on the boundarypath. Let j be the smallest index such that sj is not a leaf, and let j 0 be thesmallest index such that sj0 has a ti{transition. As s1 is a leaf and ? is anon{leaf that has a ti{transition, both j and j 0 are well{de�ned and j � j 0.Now the following lemma should be obvious.8

Fig. 2. Construction of STree(cacao)Lemma 1 Algorithm 1 adds to STrie(T i�1) a ti{transition for each of thestates sh, 1 � h < j 0, such that for 1 � h < j, the new transition expandsan old branch of the trie that ends at leaf sh, and for j � h < j 0, the newtransition initiates a new branch from sh. Algorithm 1 does not create anyother transitions.We call state sj the active point and sj0 the end point of STrie(T i�1).These states are present, explicitly or implicitly, in STree(T i�1), too. For ex-ample, the active points of the last three trees in Fig. 2 are (root; c), (root; ca),(root; �).Lemma 1 says that Algorithm 1 inserts two di�erent groups of ti{transitionsinto STrie(T i�1):(i) First, the states on the boundary path before the active point sj get atransition. These states are leaves, hence each such transition has to expandan existing branch of the trie. 9

(ii) Second, the states from the active point sj to the end point sj0 , theend point excluded, get a new transition. These states are not leaves, henceeach new transition has to initiate a new branch.Let us next interpret this in terms of su�x tree STree(T i�1). The �rstgroup of transitions that expand an existing branch could be implementedby updating the right pointer of each transition that represents the branch.Let g0(s; (k; i�1)) = r be such a transition. The right pointer has to point tothe last position i�1 of T i�1. This is because r is a leaf and therefore a pathleading to r has to spell out a su�x of T i�1 that does not occur elsewhere inT i�1. Then the updated transition must be g0(s; (k; i)) = r. This only makesthe string spelled out by the transition longer but does not change the statess and r. Making all such updates would take too much time. Therefore weuse the following trick.Any transition of STree(T i�1) leading to a leaf is called an open transition.Such a transition is of the form g0(s; (k; i � 1)) = r where, as stated above,the right pointer has to point to the last position i� 1 of T i�1. Therefore itis not necessary to represent the actual value of the right pointer. Instead,open transitions are represented as g0(s; (k;1)) = r where1 indicates thatthis transition is `open to grow'. In fact, g0(s; (k;1)) = r represents a branchof any length between state s and the imaginary state r that is `in in�nity'.An explicit updating of the right pointer when ti is inserted into this branchis not needed. Symbols 1 can be replaced by n = jT j after completingSTree(T). In this way the �rst group of transitions is implemented withoutany explicit changes to STree(T i�1).We have still to describe how to add to STree(T i�1) the second groupof transitions. These create entirely new branches that start from states sh,j � h < j 0. Finding such states sh needs some care as they need not beexplicit states at the moment. They will be found along the boundary pathof STree(T i�1) using reference pairs and su�x links.Let h = j and let (s;w) be the canonical reference pair for sh, i. e., forthe active point. As sh is on the boundary path of STrie(T i�1), w has to bea su�x of T i�1. Hence (s;w) = (s; (k; i� 1)) for some k � i.10

We want to create a new branch starting from the state represented by(s; (k; i�1)). However, �rst we test whether or not (s; (k; i�1)) already refersto the end point sj0. If it does, we are done. Otherwise a new branch has to becreated. To this end the state sh referred to by (s; (k; i�1)) has to be explicit.If it is not, an explicit state, denoted sh, is created by splitting the transitionthat contains the corresponding implicit state. Then a ti{transition from shis created. It has to be an open transition g0(sh; (i;1)) = s0h where s0h isa new leaf. Moreover, the su�x link f 0(sh) is added if sh was created bysplitting a transition.Next the construction proceeds to sh+1. As the reference pair for sh was(s; (k; i�1)), the canonical reference pair for sh+1 is canonize(f 0(s); (k; i�1))where canonize makes the reference pair canonical by updating the state andthe left pointer (note that the right pointer i � 1 remains unchanged incanonization). The above operations are then repeated for sh+1, and so onuntil the end point sj0 is found.In this way we obtain the procedure update, given below, that trans-forms STree(T i�1) into STree(T i) by inserting the ti{transitions in the secondgroup. The procedure uses procedure canonize mentioned above, and pro-cedure test{and{split that tests whether or not a given reference pair refersto the end point. If it does not then the procedure creates and returns anexplicit state for the reference pair provided that the pair does not alreadyrepresent an explicit state. Procedure update returns a reference pair for theend point sj0 (actually only the state and the left pointer of the pair, as thesecond pointer remains i� 1 for all states on the boundary path).
11

procedure update(s; (k; i)):(s; (k; i� 1)) is the canonical reference pair for the active point;1. oldr root; (end{point; r) test{and{split(s; (k; i� 1); ti);2. while not(end{point) do3. create new transition g0(r; (i;1)) = r0 where r0 is a new state;4. if oldr 6= root then create new su�x link f 0(oldr) = r;5. oldr r;6. (s; k) canonize(f 0(s); (k; i� 1));7. (end{point; r) test{and{split(s; (k; i � 1); ti);8. if oldr 6= root then create new su�x link f 0(oldr) = s;9. return (s; k).Procedure test{and{split tests whether or not a state with canonical ref-erence pair (s; (k; p)) is the end point, that is, a state that in STrie(T i�1)would have a ti{transition. Symbol ti is given as input parameter t. The testresult is returned as the �rst output parameter. If (s; (k; p)) is not the endpoint, then state (s; (k; p)) is made explicit (if not already so) by splitting atransition. The explicit state is returned as the second output parameter.procedure test{and{split(s; (k; p); t):1. if k � p then2. let g0(s; (k0; p0)) = s0 be the tk{transition from s;3. if t = tk0+p�k+1 then return(true; s)4. else5. replace the tk{transition above by transitionsg0(s; (k0; k0 + p� k)) = r and g0(r; (k0 + p� k + 1; p0)) = s0where r is a new state;6. return(false; r)7. else8. if there is no t{transition from s then return(false; s)9. else return(true; s).This procedure bene�ts from that (s; (k; p)) is canonical: The answer to12

the end point test can be found in constant time by considering only onetransition from s.Procedure canonize is as follows. Given a reference pair (s; (k; p)) forsome state r, it �nds and returns state s0 and left link k0 such that (s0; (k0; p))is the canonical reference pair for r. State s0 is the closest explicit ancestorof r (or r itself if r is explicit). Therefore the string that leads from s0 to rmust be a su�x of the string tk : : : tp that leads from s to r. Hence the rightlink p does not change but the left link k can become k0, k0 � k.procedure canonize(s; (k; p)):1. if p < k then return (s; k)2. else3. �nd the tk{transition g0(s; (k0; p0)) = s0 from s;4. while p0 � k0 � p � k do5. k k + p0 � k0 + 1;6. s s0;7. if k � p then �nd the tk{transition g0(s; (k0; p0)) = s0 from s;8. return (s; k).To be able to continue the construction for the next text symbol ti+1, theactive point of STree(T i) has to be found. To this end, note �rst that sj isthe active point of STree(T i�1) if and only if sj = tj � � � ti�1 where tj � � � ti�1is the longest su�x of T i�1 that occurs at least twice in T i�1. Second, notethat sj0 is the end point of STree(T i�1) if and only if sj0 = tj0 � � � ti�1 wheretj0 � � � ti�1 is the longest su�x of T i�1 such that tj0 � � � ti�1ti is a substringof T i�1. But this means that if sj0 is the end point of STree(T i�1) thentj0 � � � ti�1ti is the longest su�x of T i that occurs at least twice in T i, that is,then state g(sj0; ti) is the active point of STree(T i).We have shown the following result.Lemma 2 Let (s; (k; i�1)) be a reference pair of the end point sj0 of STree(T i�1).Then (s; (k; i)) is a reference pair of the active point of STree(T i).The overall algorithm for constructing STree(T) is �nally as follows.13

String T is processed symbol by symbol, in one left-to-right scan. Writ-ing � = ft�1; : : : ; t�mg makes it possible to present the transitions from ?in the same way as the other transitions.Algorithm 2. Construction of STree(T) for string T = t1t2 : : :] in alphabet� = ft�1; : : : ; t�mg;] is the end marker not appearing elsewhere in T .1. create states root and ?;2. for j 1; : : : ;m do create transition g0(?; (�j;�j)) = root;3. create su�x link f 0(root) =?;4. s root; k 1; i 0;5. while ti+1 6=] do6. i i+ 1;7. (s; k) update(s; (k; i));8. (s; k) canonize(s; (k; i)).Steps 7{8 are based on Lemma 2: After step 7 pair (s; (k; i� 1)) refers tothe end point of STree(T i�1), and hence, (s; (k; i)) refers to the active pointof STree(T i).Theorem 2 Algorithm 2 constructs the su�x tree STree(T) for a stringT = t1 : : : tn on{line in time O(n).Proof. The algorithm constructs STree(T) through intermediate trees STree(T 0),STree(T 1); : : : ;STree(T n) = STree(T). It is on{line as to construct STree(T i)it only needs access to the �rst i symbols of T .For the running time analysis we divide the time requirement into twocomponents, both turn out to be O(n). The �rst component consists of thetotal time for procedure canonize. The second component consists of therest: The time for repeatedly traversing the su�x link path from the presentactive point to the end point and creating the new branches by update andthen �nding the next active point by taking a transition from the end point(step 8 of Alg. 2). We call the states (reference pairs) on these paths thevisited states. 14

The second component takes time proportional to the total number of thevisited states, because the operations at each such state (create an explicitstate and a new branch, follow an explicit or implicit su�x link, test forthe end point) at each such state can be implemented in constant time ascanonize is excluded. (To be precise, this also requires that j�j is boundedindependently of n.) Let ri be the active point of STree(T i) for 0 � i � n.The visited states between ri�1 and ri are on a path that consists of somesu�x links and one ti{transition. Taking a su�x link decreases the depth (thelength of the string spelled out on the transition path from root) of the currentstate by one, and taking a ti{transition increases it by one. The numberof the visited states (including ri�1, excluding ri) on the path is thereforedepth(ri�1) � depth(ri) + 2, and their total number is Pni=1(depth(ri�1) �depth(ri) + 2) = depth(r0) � depth(rn) + 2n � 2n. This implies the secondtime component is O(n).The time spent by each execution of canonize has an upper bound of theform a+ bq where a and b are constants and q is the number of executionsof the body of the loop in steps 5{7 of canonize. The total time spent bycanonize has therefore a bound that is proportional to the sum of the numberof the calls of canonize and the total number of the executions of the bodyof the loop in all calls. There are O(n) calls as there is one call for eachvisited state (either in step 6 of update or directly in step 8 of Alg. 2.). Eachexecution of the body deletes a nonempty string from the left end of stringw = tk : : : tp represented by the pointers in reference pair (s; (k; p)). String wcan grow during the whole process only in step 8 of Alg. 2 which catenates tifor i = 1; : : : ; n to the right end of w. Hence a non{empty deletion is possibleat most n times. The total time for the body of the loop is therefore O(n),and altogether canonize or our �rst component needs time O(n). 2Remark 1. (due to J. K�arkk�ainen) In its �nal form our algorithm isa rather close relative of McCreight's method [9]. The principal technicaldi�erence seems to be, that each execution of the body of the main loop ofour Algorithm 2 consumes one text symbol ti whereas each execution of the15

body of the main loop of McCreight's algorithm traverses one su�x link andconsumes zero or more text symbols.Remark 2. It is not hard to generalize Algorithm 2 for the following dy-namic version of the su�x tree problem (c.f. the adaptive dictionary matchingproblem of [2]): Maintain a generalized linear{size su�x tree representing allsu�xes of strings Ti in set fT1; : : : ; Tkg under operations that insert or deletea string Ti. The resulting algorithm will make such updates in time O(jTij).5. CONSTRUCTING SUFFIX AUTOMATAThe su�x automaton SA(T) of a string T = t1 : : : tn is the minimal DFAthat accepts all the su�xes of T .As our STrie(T) is a DFA for the su�xes of T , SA(T) could be obtainedby minimizing STrie(T) in standard way. Minimization works by combiningthe equivalent states, i. e., states from which STrie(T) accepts the same setof strings. Using the su�x links we will obtain a natural characterization ofthe equivalent states as follows.A state s of STrie(T) is called essential if there is at least two di�erentsu�x links pointing to s or s = t1 � � � tk for some k.Theorem 3 Let s and r be two states of STrie(T). The set of strings ac-cepted from s is equal to the set of strings accepted from r if and only if thesu�x link path that starts from s contains r (the path from r contains s) andthe subpath from s to r (from r to s) does not contain any other essentialstates than possibly s (r).Proof. The theorem is implied by the following observations.The set of strings accepted from some state of STrie(T) is a subset of thesu�xes of T and therefore each accepted string is of di�erent length.A string of length i is accepted from a state s of STrie(T) if and only ifthe su�x link path that starts from state t1 � � � tn�i contains s.The su�x links form a tree that is directed to its root root. 216

This suggests a method for constructing SA(T) with a modi�ed Algo-rithm 1. The new feature is that the construction should create a new stateonly if the state is essential. An unessential state s is merged with the �rstessential state that is before s on the su�x link path through s. This iscorrect as, by Theorem 3, the states are equivalent.As there are O(jT j) essential states, the resulting algorithm can be madeto work in linear time. The algorithm turns out to be similar to the algo-rithms in [4{6]. We therefore omit the details.Acknowledgements. J. K�arkk�ainen pointed out some inaccuracies in the ear-lier version [10] of this work. The author is also indebted to E. Sutinen,D. Wood, and, in particular, S. Kurtz and G. A. Stephen for several usefulcomments.References1. A. Aho and M. Corasick, E�cient string matching: An aid to biblio-graphic search, Comm. ACM 18 (1975), 333{340.2. A. Amir and M. Farach, Adaptive dictionary matching, in Proc. 32ndIEEE Ann. Symp. on Foundations of Computer Science, 1991, pp. 760{766.3. A. Apostolico, The myriad virtues of subword trees, in Combinato-rial Algorithms on Words (A. Apostolico and Z. Galil, eds.), Springer{Verlag, 1985, pp. 85{95.4. A. Blumer & al., The smallest automaton recognizing the subwords ofa text, Theor. Comp. Sci. 40 (1985), 31{55.5. M. Crochemore, Transducers and repetitions, Theor. Comp. Sci. 45(1986), 63{86. 17

6. M. Crochemore, String matching with constraints, in MathematicalFoundations of Computer Science 1988 (M.P. Chytil, L. Janiga and V.Koubek, eds.), Lect. Notes in Computer Science, vol. 324, Springer{Verlag, 1988, pp. 44{58.7. Z. Galil and R. Giancarlo, Data structures and algorithms for approx-imate string matching, J. Complexity 4 (1988), 33{72.8. M. Kempf, R. Bayer and U. G�untzer, Time optimal left to right con-struction of position trees, Acta Informatica 24 (1987), 461{474.9. E. McCreight, A space{economical su�x tree construction algorithm,Journal of the ACM 23 (1976), 262{272.10. E. Ukkonen, Constructing su�x trees on{line in linear time, in Algo-rithms, Software, Architecture. Information Processing 92, vol. I (J.van Leeuwen, ed.), Elsevier, 1992, pp. 484{492.11. E. Ukkonen, Approximate string{matching over su�x trees, in Com-binatorial Pattern Matching, CPM'93 (A. Apostolico, M. Crochemore,Z. Galil, and U. Manber, eds.), Lect. Notes in Computer Science, vol.684, Springer{Verlag, 1993, pp. 228{242.12. E. Ukkonen and D. Wood, Approximate string matching with su�xautomata, Algorithmica 10 (1993), 353{364.13. P. Weiner, Linear pattern matching algorithms, in IEEE 14th Ann.Symp. on Switching and Automata Theory, 1973, pp. 1{11.
18

