
SOFTWARE—PRACTICE AND EXPERIENCE, VOL. 24(3), 327–336 (MARCH 1994)

A New Data Structure for Cumulative
Frequency Tables

peter m. fenwick
Department of Computer Science, University of Auckland, Private Bag 92019, Auckland,

New Zealand (email: pfenwickKcs.auckland.ac.nz)

SUMMARY

A new method (the ‘binary indexed tree’) is presented for maintaining the cumulative frequencies
which are needed to support dynamic arithmetic data compression. It is based on a decomposition
of the cumulative frequencies into portions which parallel the binary representation of the index
of the table element (or symbol). The operations to traverse the data structure are based on the
binary coding of the index. In comparison with previous methods, the binary indexed tree is
faster, using more compact data and simpler code. The access time for all operations is either
constant or proportional to the logarithm of the table size. In conjunction with the compact data
structure, this makes the new method particularly suitable for large symbol alphabets.

key words: Binary indexed tree Arithmetic coding Cumulative frequencies

INTRODUCTION

A major cost in adaptive arithmetic data compression is the maintenance of the table
of cumulative frequencies which is needed in reducing the range for successive
symbols. Witten, Neal and Cleary1 ease the problem by providing a move-to-front
mapping of the symbols which ensures that the most frequent symbols are kept near
the front of the search space. It works well for highly skewed alphabets (which may
be expected to compress well) but is much less efficient for more uniform distributions
of symbol frequency. Moffat2 describes a tree structure (actually a heap) which
provides a linear-time access to all symbols. Jones3 uses splay trees to provide an
optimized data structure for handling the frequency tables. The three techniques will
be referred to in this paper as MTF, HEAP and SPLAY, respectively. In all cases
they attempt to keep frequently used symbols in quickly-referenced positions within
the data structure, but at the cost of sometimes extensive data reorganization.

This current paper describes a new method which uses only a single array to
store the frequencies, but stores them in a carefully chosen pattern to suit a novel
search technique whose cost is proportional to the number of 1 bits in the element
index. This cost applies to both updating and interrogating the table. In comparison
with the other methods it is simple, compact and fast and involves no reorganization
or movement of the data.

CCC 0038–0644/94/030327–10 Received 7 June 1993
 1994 by John Wiley & Sons, Ltd. Revised 6 October 1993



328 p. m. fenwick

PRINCIPLES

The basic idea is that, just as an integer is the sum of appropriate powers of two,
so can a cumulative frequency be represented as the appropriate sum of sets of
cumulative ‘subfrequencies’. Thus, if the index contains a ‘2 bit’ we include two
frequencies, if it has an ‘8 bit’ we include 8 frequencies, and so on.Figure 1shows
a table of size 16.

The first row is simply the index. The second shows the contents of that entry
of the table; for example, element 4 contains the sum of frequencies 1 to 4 inclusive,
and element 6 has the sum of frequency 5 and frequency 6. The final three rows
show an actual example, with the individual frequencies, the true cumulative fre-
quencies and the values stored in the table. In the following discussion, the stored
values and item frequencies will be regarded as two arrays,V and F, respectively.

The fundamental operation involves calculating a new index by stripping the least-
significant 1 from the old index, and repeating this operation until the index is zero.
For an initial index of 11 this process yields the sequence 11, 10, 8, 0. To read the
cumulative frequency for element 11, we form the sumV[11] + V[10] + V[8] +
V[0]. Referring back to the second row of the table, we see that this sequence
corresponds to the frequenciesF[11] + F[9. . .10] + F[1. . .8] + F[0], where F[1. . .8]
meansF[1] + . . . + F[8]. The final value is thusF[0. . .11], which is the desired result.

The indexing method generates a tree within the table of partial frequencies, with
the structure shown inFigure 2. Each bar represents the range of frequencies held
in the array element corresponding to its topmost position (the shaded rectangles).
It is clear that traversing the tree from any node to the root will accumulate all of
the necessary frequencies.

Alternatively, we can draw the tree in a more conventional form. The table is, in
effect, two different trees superimposed on the same table and differentiated by their
access algorithms. The ‘interrogation tree’ (to read a cumulative frequency) is
a decidedly unbalanced tree, as shown inFigure 3. The ‘update tree’ will be
described later.

The branching ratio of each node is the number of trailing zeros in its binary
representation (each child is formed by converting one of the trailing zeros to a
one). The depth at each node is the Hamming weight of its binary index. It is
unusual in that its power derives, not from its structure or shape, but from the
indexing algorithm. In recognition of the close relationship between the tree traversal
algorithms and the binary representation of an element index, the name ‘binary
indexed tree’ is proposed for the new structure.

Figure 1. Example of the table



329cumulative frequency tables

Figure 2. The tree of partial frequencies

Figure 3. The interrogation tree

OPERATIONS AND CODE TO HANDLE THE STRUCTURE

We need the following functions when processing a symbol in conjunction with
arithmetic coding. In all cases the ‘index’ is synonymous with the coding symbol.

1. Read the cumulative frequency for an index.
2. Update the table according a new frequency at a given position.
3. Read the actual frequency at a position.
4. Find the symbol position within which a given frequency lies.
5. Scaling the entire tree by a constant factor (usually halving all counts).



330 p. m. fenwick

In all of these functions we need efficient ways of isolating and manipulating the
least significant 1 bit of a number. Isolating the bit is most easily done (for a two’s
complement number) by considering the operation of complementing a positive
number. The serial complementing algorithm examines the bits in order from the
right (least significant bit), copying all of the least-significant zeros and the rightmost
1 and then complementing each bit to the left. Thus taking the logicalAND of a
number and its two’s complement isolates the least significant one bit; the bit is
present in both values, to its right both values are all-zero, and to its left one or
other of the numbers always has a zero. For example, 20 is represented to 8 bits
as 00010100 with a two’s complement of 11101100;ANDing the two values gives
the result 00000100. With the functionBitAnd, as used in many dialects of Pascal,
we have thatLSOne:=BitAnd(ix,−ix).

From the above discussion we see that the assignmentix:=ix−BitAnd(ix,−ix) will
strip off the least significant one bit of a binary number. A slightly simpler realization
of the function is ix:=BitAnd(ix,ix−1). The discussion is similar to the above, noting
that (ix−1) replaces a trailing . . .10000. . . by . . .01111. . ., leaving unchanged the
bits to the left of the rightmost 1.

Both of the operations (extracting the bit and removing the bit) are simple and
can be done with negligible overhead on most computers.

Although these techniques were developed for two’s complement binary numbers,
it is worth noting that stripping the least significant one withix:=BitAnd(ix,ix−1) will
work equally well with ones’s complement or signed magnitude binary arithmetic,
as long as the initial value ofix is strictly positive, as is assumed throughout this
paper. Starting with this as a basis, the operationLSOne:=ix−BitAnd(ix,ix−1) will
extract the least significant one from a number for all three representations. An
alternative method isLSOne:=BitAnd(ix,2k−ix), where 2k is a power of 2 greater than
the table size.

THE CUMULATIVE FREQUENCY

A Pascal function to read the cumulative frequency is shown inFigure 4. For this
and the following examples, the arrayTree contains the appropriate subfrequencies.
The number of iterations is clearly just the number of 1 bits in the desired index.

As a simple indication of the cost of reading a value from the table, we can

Figure 4. TheGetCumul function



331cumulative frequency tables

Figure 5. Updating the table

count the number of memory accesses into the data table. For a table of 2N entries,
this is clearly 1+N/2 on average. (Unless otherwise stated we will assume a uniform
frequency distribution.) Note that this is anaveragevalue only. The combination of
an irregular symbol distribution and the non-uniform access costs of the binary
indexed tree can lead to some variations for real symbol alphabets.

UPDATING THE TABLE

In reading a value we strip off 1 bits and move back towards the start of the table.
In updating the table we must increment all subfrequencies above the position being
incremented (seeFigure 5). Referring toFigure 1, an adjustment to element 9 must
be accompanied by adjustments to elements 10 and 12 (those whose ranges cover
9). From 9 we step to 10 (add 1) and then to 12 (add 2). Instead of stripping off
the least-significant 1 bit (i.e. subtracting), we now add it on at each stage to get
the next entry to adjust.

In the example ofFigure 1, if we wish to adjust position 5, the successive indices
are 5, then 6 (5+ 1), and finally 8 (6+ 2). These three changes affect all of the
cumulative frequencies from position 5 up.

The tree for updating is essentially the mirror-image of the interrogation tree, with
each element resembling its 16-complement in the earlier one. It is shown inFigure 6.
Each parent still has a 1 with trailing zeros, but the child indices are formed by
successively replacing the first 1, 2, 3 . . . of those zeros by ones. The interrogation
tree has element 0 at its root; the update tree has an implicit element 16 at the root
and element 0 stands apart as a special case. (Element 16, or its equivalent, is used
as theEND symbol in Witten’s implementation of arithmetic coding and is then a
valid part of the table.)

Figure 6. The updating tree



332 p. m. fenwick

The cost in table references is most easily found by noting that the interrogation
and updating trees are mirror-images of each other. The cost of adding a frequency
into the table is therefore still references toN/2 elements, orN references with
separate reads and writes. Once again, we can expect real alphabets to have some
deviations from this average.

READING A SINGLE FREQUENCY

We read a single frequency by taking the difference of two adjacent cumulative
frequencies. If the paths from the two nodes to the root have some part in common
the shared parts will cancel and we need evaluate the paths only as far as the
junction. Detection of the common path is facilitated by an interesting property of
the binary indexed tree. We consider a node, its predecessor and its parent, with
indices α, β and γ respectively andα = β + 1. Then γ (being a parent) is some bit
pattern followed by one or more zeros, sayx0000. We obtainα from γ by changing
one zero to a 1, sayx0100. This givesβ = x0011 which clearly hasγ as an ancestor
because removing trailing ones fromβ will eventually yield γ. If α is odd then
β = γ and the parent and predecessor coincide. In general:The parent of any node
is either an ancestor of the predecessor of that node, or is the predecessor itself.

For elementi we then read the value at nodei, obtain the parent to nodei and
then trace back from nodei−1 to the parent of nodei, subtracting off the values
traversed. Code is shown inFigure 7.

The cost is one plus the number of trailing zeros in the index. Half the time
(with an odd initial index) it is necessary to read only a single value from the table,
for one quarter of the time (indices 2, 6, 10, 12, . . .) it is necessary to read two
values, in one of eight cases to read three values, and so on. Each term has the
form i × 2−i and the series has a sum of 2, which value may be taken as a reasonable
approximation of the cost in most cases. For a 256-element table the sum is
actually 1·93.

Figure 7. Finding a single frequency



333cumulative frequency tables

FINDING AN ELEMENT CORRESPONDING TO A FREQUENCY

The last operation is that of finding the element corresponding to a given cumulative
frequency. This action is performed by the modified binary search shown inFigure 8.

It is called with the test value and a mask which initially locates the midpoint of
the table. (With the 16-element table of the examples here, the initial value ofMask
would be 8.) At each stageIndex defines the base of the area still to be searched.
The midpoint is probed and, if the value is above the midpoint, the value is
subtracted off the desired frequency and the midpoint becomes the newIndex value
(or base of the search area). Finally, theMask value is halved to search at a
finer resolution.

The program ofFigure 8 fails if the true frequency of the element is zero. This
is not a problem with the arithmetic coding algorithm of Wittenet al. which requires
non-zero frequencies. There seems to be no efficient programming solution to this
problem, but a simple detour is to assume a constant base frequency for all values,
adjusting the cumulative or real frequencies as they are read.

The average cost in table references is an initial test of the zero element, followed
by a probe for each bit of the index and a 50 per cent probability of having to
read the value to revise the frequency (although this last reference may disappear
with compiler optimization). The cost in table references, for a 2N entry table, is
then either 1+ N, or 1+ 3N/2. The cost is again logarithmic in the table size.

SCALING THE ENTIRE TREE

Most implementations of adaptive arithmetic coding require that the cumulative
frequencies be scaled back as soon as the total frequency exceeds some defined
threshold. For example, we may halve all frequencies as soon as the total exceeds
16,383. Superficially, it appears that as all values are a linear combination of tree
entries we can simply halve all of the table entries, but rounding leads to inconsistent

Figure 8. Finding the element, given a frequency



334 p. m. fenwick

Figure 9. Halving all frequencies

entries, with some small frequencies vanishing completely. A simple possibility is
to read all of the cumulative frequencies into a work array and then clear and
rebuild the tree.

However, it is possible to rebuild the tree in place. First note that when reading
values we refer only to entries below the leaf node, whereas when updating, we
modify only those above the leaf node. Therefore, by scanning down the table
reading and updating, we will always read only the old, unmodified values. The
loop to halve all frequencies just reads the frequency for an index and subtracts
half that value from the same index. It is shown inFigure 9.

PERFORMANCE AND COMPARISONS

The binary indexed tree technique (BIT) was compared with the MTF-algorithm of
Witten et al. Jones SPLAY algorithm and Moffat’s HEAP algorithm. In all cases
the model maintenance involves relatively simple loops which adjust array elements.
A simple comparison is the number of accesses to the arrays of the model. Although
the code in SPLAY and HEAP is more complex than for the other two examples,
its quantity and style is more or less in line with the number of memory references.
The zero-order arithmetic coder itself is taken from Wittenet al.,1 replacing the
model as necessary. The array-reference frequencies were obtained by adding
refs:=refs+1 statements to the programs at appropriate places.

Measurements were made on the smaller files of the Calgary Corpus (size about
100 kbytes and smaller) with the results ofTable I. The files geo and obj1 are
binary, with an alphabet of 256 symbols, whereas most of the remaining files are
text, with an alphabet of about 96 symbols. The additional fileskew contains the
pattern ‘aaaab’, repeated to a length of 20,000 bytes.

In all of the realistic cases the binary indexed tree requires fewer data memory
references than the other algorithms. All of the text files have an average cost of

Table I. Comparative results

MTF SPLAY HEAP BIT

bib 32·7 76·3 22·5 17·9
geo 81·3 80·2 25·2 13·8
obj1 83·4 73·1 27·5 13·5
paper1 28·2 69·7 22·1 17·7
paper2 22·6 67·5 21·6 17·7
progc 34·3 71·9 22·6 17·9
progl 24·9 63·0 21·8 17·9
progp 29·2 65·5 22·0 18·1
trans 38·5 70·7 23·2 17·2
skew 5·3 14·6 17·2 18·2



335cumulative frequency tables

about 18 array references for each symbol encoded, compared with an average of
about 30 for MTF, 70 for SPLAY and 22 for HEAP. The two binary files are even
better, at 13·7 compared with 82 and 26. The critical factor appears to be the actual
vocabulary of the file, with the three older methods improving for smaller working
alphabets. This effect is particularly marked on theskew file, where move-to-front
performs particularly well, but the binary indexed tree still behaves as for any text
file. Jones, comparing actual execution times for SPLAY and MTF, noted that the
splay algorithm was faster only for files with high entropy (such asgeo). Moffat
found little real difference in performance between MTF and HEAP. The results
here agree with those observations.

The costs given earlier for a 256 entry table predict eight references to update an
element, five to read a cumulative frequency and two to read a single frequency,
giving a total of 15 references per input byte. As the alphabet actually uses 257
symbols, to allow the end-of-file code, thePutValue routine always refers to the root
element (Tree[256]). This adds an extra two memory references to each update
operation, increasing the previous count to 17. The need to scale (read and update)
all values after each 16,384 input symbols adds another 0·2 references per input
symbol. This gives a predicted cost of 17·2 references per byte. The extra 0·5–1
references per symbol arise from the non-uniform symbol distribution interacting
with the tree structure.

The MTF model uses three parallel arrays, with a total of four bytes per symbol
of the coding alphabet. (We assume here that all integers are 16 bit.) Moffat’s
HEAP algorithm adds a further integer array, to give a total of six bytes per symbol.
Jones’ SPLAY algorithm uses four arrays of integers (although one could be eight
bits), to give eight bytes per symbol. The binary indexed tree requires only one
integer (two bytes) for each possible symbol and is much more compact than any
of the alternatives as well as being faster for most files.

FURTHER APPLICATIONS

When starting arithmetic compression it is sometimes useful to increment counts by
more than one to force a faster initial adjustment of the model. One little known
problem of the move-to-front algorithm is that it works only for increments by one
and that extending it to handle larger increments is not easy without compromising
the efficiency. The binary indexed tree does not have this problem.

The simple compact data structure of the binary indexed tree makes it useful for
a ‘brute force’ implementation of an order-one arithmetic compressor. Briefly, such
a compressor uses the known, previous, character to select one of 256 models to
encode the next character, leading to a total of 65,536 entries in the model tables.
As the move-to-front model needs at least four bytes per entry (256K bytes in total),
it is usual to combine the models with an LRU structure which retains only important
elements. For example, Gutmann4 requires 10 bytes per element and uses from 3000
elements (for text files) to 20,000 elements for some binaries. The binary indexed
tree requires only two bytes per element and only 128K bytes to hold the entire
model. The storage requirements are therefore reasonable in modern computers and
we avoid all of the problems associated with managing the LRU lists.

Another potential use for the binary indexed tree is in handling very large alphabets



336 p. m. fenwick

such as occur in word-based arithmetic compression.5 In this case we take advantage
of the compact data structure and the logarithmic access cost.

acknowledgments

Thanks are due to the University of Auckland for the provision of research facilities,
to Peter Gutmann and Stuart Woolford whose interest provided the incentive for this
work and to the referees for valuable comments, including the formalization of the
result which underlies the reading of the single frequency.

REFERENCES

1. I. H. Witten, R. Neal and J. G. Cleary, ‘Arithmetic compression for data compression’,CACM, 30, (6),
520–540 (1987).

2. A. Moffat, ‘Linear time adaptive coding’,IEEE Trans Info. Theory,36, (2), 401–406 (1990).
3. D. W. Jones, ‘Application of splay trees to data compression’,Comm ACM,31, (8), 996–1007 (1988).
4. P. C. Gutmann, ‘Practical dictionary/arithmetic data compression synthesis’,MSc Thesis, University of

Auckland, February 1992.
5. A. Moffat, ‘Word-based text compression’,Software—Practice and Experience,19, 185–198 (1989).


	SUMMARY
	INTRODUCTION
	PRINCIPLES
	OPERATIONS AND CODE TO HANDLE THE STRUCTURE
	THE CUMULATIVE FREQUENCY
	UPDATING THE TABLE
	READING A SINGLE FREQUENCY
	FINDING AN ELEMENT CORRESPONDING TO A FREQUENCY
	SCALING THE ENTIRE TREE
	PERFORMANCE AND COMPARISONS
	FURTHER APPLICATIONS

